Definitions | s = t, t T, x:A B(x), x:A. B(x), ES, EState(T), a:A fp B(a), f(a), Id, , strong-subtype(A;B), P  Q, Type, EqDecider(T), Unit, left + right, IdLnk, x:A B(x), EOrderAxioms(E; pred?; info), kindcase(k; a.f(a); l,t.g(l;t) ), Knd, loc(e), kind(e), Msg(M), type List, , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r s, e < e', , b, constant_function(f;A;B), SWellFounded(R(x;y)), , pred!(e;e'),  x,y. t(x;y), !Void(), x:A.B(x), Top, S T, suptype(S; T), first(e), A, <a, b>, pred(e), x.A(x),  x. t(x), P & Q, E, AbsInterface(A), e  X, {x:A| B(x)} , E(X), sys-antecedent(es;Sys), e c e', let x,y = A in B(x;y), t.1, chain-consistent(f;chain), x:A. B(x), P Q, a < b, hd(l), L1 L2, adjacent(T;L;x;y), (x l), no_repeats(T;l), Atom$n, loc(e), x << y, x before y l, cr-fails-before(es; Sys; chain; x; y), ||as||, #$n, False, , Outcome, A B, l[i], |g|, A c B, [], [car / cdr], {i..j }, ff, inr x , tt, inl x , True, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , P  Q, P   Q, f(x)?z, {T}, SQType(T), s ~ t, (e <loc e'), last(L), X(e), increasing(f;k), i j < k, A List |